Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612293

RESUMO

While considered as hard milkers, both buffaloes and camels are milked with equipment destined for dairy cows based on external morphological similarities with this species. This work aimed to study similarities and differences in milkability traits between Mediterranean buffaloes and Maghrebi she-camels and to evaluate the effect of parity and lactation stage. A total of 422 milk flow curves recorded with an electronic milkmeter (Lactocorder®) for both species were accessed. Milking characteristics including milk yield per milking, peak milk flow, average milk flow, duration of the main milking phase, duration of total milking, duration of various phases of milk flow, lag time and time to milk ejection, stripping yield, overmilking time and incidence of bimodal milk flow curves were evaluated for both species. Results showed that the values of milk yield per milking, duration of the main milking phase and duration of total milking were higher in buffaloes (3.98 ± 0.10 kg; 4.07 ± 0.11 min; 9.89 ± 0.21 min, respectively) compared to camels (3.51 ± 0.08 kg; 3.05 ± 0.09 min; 3.76 ± 0.09 min, respectively). However, camels had significantly higher peak and average milk flow (2.45 ± 0.07 kg/min and 1.16 ± 0.03 kg/min, respectively). Camels took significantly less time for milk ejection to occur. Only 15.49% of recorded curves were bimodal in buffaloes while 34.93% of bimodal curves were recorded for camels. Overmilking was significantly higher in buffaloes (3.64 ± 0.21 min vs. 0.29 ± 0.02 min). Parity and lactation stage had a significant effect on most studied milking traits suggesting the need for some particular practices with primiparous animals and animals at different levels of lactation for both species.

2.
Sci Rep ; 13(1): 18282, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880358

RESUMO

Modern livestock farm technologies allow operators to have access to a multitude of data thanks to the high number of mobile and fixed sensors available on both the livestock farming machinery and the animals. These data can be consulted via PC, tablet, and smartphone, which must be handheld by the operators, leading to an increase in the time needed for on-field activities. In this scenario, the use of augmented reality smart glasses could allow the visualization of data directly in the field, providing for a hands-free environment for the operator to work. Nevertheless, to visualize specific animal information, a connection between the augmented reality smart glasses and electronic animal identification is needed. Therefore, the main objective of this study was to develop and test a wearable framework, called SmartGlove that is able to link RFID animal tags and augmented reality smart glasses via a Bluetooth connection, allowing the visualization of specific animal data directly in the field. Moreover, another objective of the study was to compare different levels of augmented reality technologies (assisted reality vs. mixed reality) to assess the most suitable solution for livestock management scenarios. For this reason, the developed framework and the related augmented reality smart glasses applications were tested in the laboratory and in the field. Furthermore, the stakeholders' point of view was analyzed using two standard questionnaires, the NASA-Task Load Index and the IBM-Post Study System Usability Questionnaire. The outcomes of the laboratory tests underlined promising results regarding the operating performances of the developed framework, showing no significant differences if compared to a commercial RFID reader. During the on-field trial, all the tested systems were capable of performing the task in a short time frame. Furthermore, the operators underlined the advantages of using the SmartGlove system coupled with the augmented reality smart glasses for the direct on-field visualization of animal data.


Assuntos
Realidade Aumentada , Animais , Fazendas , Gado , Agricultura , Eletrônica
3.
Sci Rep ; 12(1): 15729, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36131126

RESUMO

Smart glasses for augmented reality are digital technology under investigation in the agricultural sector. The potential of augmented reality was underlined, in some scientific contributions, as a support tool for farmers' activities and for the decision-making process. One of the most practical applications studied for augmented reality was in maintenance operations, where the use of smart glasses showed high capability. This work focuses on the evaluation of the performance and applicability of smart glasses with a video see-through display system and testing the device's available functions in agricultural frameworks. In addition, an augmented assistance scenario describing the main steps involved in the functioning of the maintenance operation was developed for milking machine inspection. The audio-video quality, battery life, detection capabilities of markers, and voice control interaction system were evaluated. The results showed the capabilities of smart glasses to reach augmented information from a long distance in a short time interval and to transmit audio and video with a high level of detail, allowing discrimination of small objects during remote assistance with reduced delay. The built maintenance scenario represents an example of augmented reality digital assistance application in the inspection and maintenance of the milking machine. The device performance and the proposed maintenance scenario underline the potential that augmented reality could have in the agricultural sector to assist and guide both farmers and technicians to timely problem solving. This solution fits into the agriculture 4.0 perspective, which is increasingly focused on digital transformation to improve farms' efficiency and sustainability.


Assuntos
Realidade Aumentada , Óculos Inteligentes , Óculos
4.
Anim Sci J ; 92(1): e13667, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34877736

RESUMO

The objectives of this study were to evaluate and compare the effect of working vacuum levels (35 and 44 kPa) and liners dimensions (mouthpiece lip diameter and overall length, 20-185 and 22-170 mm) on the main milking characteristics of goats. The results highlight that both the working vacuum level and the liner dimension have influenced the milk flow curve parameters. The maximum variations were found for peak flow rate, which increased significantly with liner dimensions of 20-185 mm at a working vacuum level of 44 kPa as well as average milk flow rate and for plateau phase duration. The incorrect adoption of operative parameters and unsuitable milking machine components, might affect the performance of the mechanical milking and negatively affecting animal productions and welfare.


Assuntos
Cabras , Leite , Animais , Indústria de Laticínios , Feminino , Lactação , Glândulas Mamárias Animais , Vácuo
5.
Animals (Basel) ; 10(7)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32708845

RESUMO

Mechanical milking is a critical operation in ewe dairy farming where the operative parameters and the milking routine strongly influence milk production and animal welfare. The challenge in adapting dairy animals to the farm environmental conditions may cause illness and compromise the quality of the products. From this perspective, it is important to evaluate the technological and operational aspects that can influence milk quality and animal welfare. Thus, the aim of this work was to investigate the effects on the pulsation curve of several teat cup characteristics (volume of the pulsation chamber) at determined operating parameters (vacuum level and pulsator rate) recorded from nine different milking units. Moreover, the touch point pressure of different liners was measured. Data analysis showed that the sheep milking unit characteristics affected the pulsation curve significantly. The length of both the increasing vacuum phase and the decreasing vacuum phase (phase "a" and "c", respectively), which affect the milking and massage phases, was directly related to the pulsation chamber volume (R2 = 0.86) and the pulsator rate. No relationship emerged between the touch point pressure and specific characteristics of the liners such as the material, the shape, the diameter, the length, or the extension of the body. Considering the delicate role that the pulsation plays in ensuring animal welfare during milking, it is important to take into account the complete configuration and operative characteristics of the milking units. This will ensure that the complex interaction between the pulsation system and the milking units is considered when planning and assembling milking systems.

6.
Animals (Basel) ; 9(11)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683920

RESUMO

The growing interest in Augmented Reality (AR) systems is becoming increasingly evident in all production sectors. However, to the authors' knowledge, a literature gap has been found with regard to the application of smart glasses for AR in the agriculture and livestock sector. In fact, this technology allows farmers to manage animal husbandry in line with precision agriculture principles. The aim of this study was to evaluate the performances of an AR head-wearable device as a valuable and integrative tool in precision livestock farming. In this study, the GlassUp F4 Smart Glasses (F4SG) for AR were explored. Laboratory and farm tests were performed to evaluate the implementation of this new technology in livestock farms. The results highlighted several advantages of F4SG applications in farm activities. The clear and fast readability of the information related to a single issue, combined with the large number of readings that SG performed, allowed F4SG adoption even in large farms. In addition, the 7 h of battery life and the good quality of audio-video features highlighted their valuable attitude in remote assistance, supporting farmers on the field. Nevertheless, other studies are required to provide more findings for future development of software applications specifically designed for agricultural purposes.

7.
Sci Total Environ ; 649: 461-472, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30176458

RESUMO

The setting up of innovative irrigation water management might contribute to the mitigation of negative issues related to climate change. Our hypothesis was that globe artichoke irrigated with a traditionally drip system could be converted to an innovative water management system based on precision irrigation techniques and on evaporative cooling application in order to improve crop physiological status with positive impacts on earliness, total heads yield and water saving. Over two experiments carried out at plot- and field-scale, two irrigation management systems, differing in type and application time, were compared: (i) conventional, and (ii) canopy-cooling. Plant physiological status at a weekly sampling interval and the head atrophy incidence (as the ratio of the total primary heads collected) were monitored. We also recorded and determined heads production, and yield components. In both experiments, throughout the application period of evaporative cooling (three months), canopy-cooling showed the lowest value of leaf temperature and the highest photosynthesis values compared with the conventional one (+3 °C and -30%, respectively). The physiological advantage gained by the crop with evaporative cooling has led to a higher production both in terms of total yield (+30%), and in terms of harvested first order heads that from an economic viewpoint are the most profitable for farmers. At farm-scale, the canopy-cooling treatment resulted in a higher earliness (35 days) and water productivity (+36%) compared with conventional one. Our findings show that by combining evaporative cooling practice with precision irrigation technique the heads yield can be optimized also leading to a relevant water saving (-34%). Moreover, the study proved that canopy-cooling set up might be a winning strategy in order to mitigate climatic changes and heat stress conditions.


Assuntos
Irrigação Agrícola/métodos , Mudança Climática , Produtos Agrícolas/fisiologia , Cynara scolymus/fisiologia , Adaptação Fisiológica , Produtos Agrícolas/crescimento & desenvolvimento , Cynara scolymus/crescimento & desenvolvimento , Itália
8.
Sci Total Environ ; 651(Pt 2): 2514-2523, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30336441

RESUMO

Over the last decades, traditional olive production has been converted to intensive and super-intensive cultivation systems, characterized by high plant density and irrigation. Although this conversion improves product quality and quantity, it requires a larger amount of energy input. The new contributions in this paper are, first, an analysis of the energy and environmental performance of two commercial-scale high peak-power hybrid photovoltaic irrigation systems (HPVIS) installed at intensive and super-intensive Mediterranean olive orchards; second, an analysis of PV hybrid solutions, comparing PV hybridization with the electric power grid and with diesel generators; and finally, a comparison of the environmental benefits of HPVIS with conventional power sources. Energy and environmental performances were assessed through energy and carbon payback times (EPBT and CPBT). The results show EPBT of 1.98 and 4.58 years and CPBT of 1.86 and 9.16 years for HPVIS in Morocco and Portugal, respectively. Moreover, the HPVIS were able to achieve low emission rates, corresponding to 48 and 103 g CO2e per kWh generated. The EPBT and CPBT obtained in this study were directly linked with the irrigation schedules of the olive orchards; therefore, weather conditions and irrigation management may modify the energy and environmental performances of HPVIS. The consumption of grid electricity and diesel fuel, before and after the implementation of HPVIS, was also analyzed. The results obtained show fossil energy savings of 67% for the Moroccan farm and 41% for the Portuguese installation. These savings suggest that the energy produced by HPVIS in olive orchards will avoid the emissions of a large amount of greenhouse gas and the exploitation of natural resources associated with fossil fuel production.


Assuntos
Irrigação Agrícola/instrumentação , Produção Agrícola , Fontes de Energia Elétrica , Olea , Energia Solar , Irrigação Agrícola/métodos , Produção Agrícola/métodos , Marrocos , Olea/crescimento & desenvolvimento , Portugal , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA